Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Cell Rep Methods ; 4(3): 100721, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38452769

ABSTRACT

Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.


Subject(s)
RNA, Ribosomal , RNA , Animals , Mice , Humans , RNA, Messenger/genetics , RNA/metabolism , RNA, Ribosomal/genetics , Methylation , Methyltransferases/metabolism
2.
Curr Opin Plant Biol ; 73: 102363, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37094492

ABSTRACT

Along with the emergence of green plants on this planet one billion years ago, the nucleotide binding site leucine-rich repeat (NLR) gene family originated and diverged into at least three subclasses. Two of them, with either characterized N-terminal toll/interleukin-1 receptor (TIR) or coiled-coil (CC) domain, serve as major types of immune receptor of effector-triggered immunity (ETI) in plants, whereas the one having a N-terminal Resistance to powdery mildew8 (RPW8) domain, functions as signal transfer component to them. In this review, we briefly summarized the history of identification of diverse NLR subclasses across Viridiplantae lineages during the establishment of NLR category, and highlighted recent advances on the evolution of NLR genes and several key downstream signal components under the background of ecological adaption.


Subject(s)
NLR Proteins , Plant Immunity , NLR Proteins/genetics , Plant Immunity/genetics , Plants/genetics , Plants/metabolism , Protein Domains/genetics , Plant Diseases/genetics , Plant Proteins/metabolism
3.
Adv Sci (Weinh) ; 10(7): e2206361, 2023 03.
Article in English | MEDLINE | ID: mdl-36599687

ABSTRACT

Red blood cells (RBC) are commonly known as cells with no nucleus or mitochondria and are assumed to be a transportation vehicle. This study confirms that RBC contain long DNA fragments inside with stain by both microscope and flow cytometry, which covers most nuclear and mitochondrial genome regions by next-generation sequencing (NGS). Such characteristics demonstrate a significant difference compared with A549 cell line or paired peripheral blood mononuclear cell as nucleated cells. To further explore the characteristics of RNA DNA, DNA from 20 RBC samples is sequenced by NGS. Interestingly, several gaps and multiple regions with copy number variation are observed significantly different between different samples, which could be used to distinguish samples with different health status accurately. Using an in vitro co-culture system, it is shown that RBC could absorb DNA-bearing tumorigenic mutations from cancer cell lines but requires cell-to-cell contact. Finally, based on a small scale clinical trial, it is confirmed that common genetic mutations of cancer tissues could be detected in RBC from patients with early-stage non-small-cell lung cancer. This study highlights a new biological phenomenon involving RBC and its translational potential as a novel liquid biopsy technology platform for early cancer screening and diagnosis of malignancy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , DNA Copy Number Variations , Leukocytes, Mononuclear , Erythrocytes/pathology , DNA
4.
Plant Commun ; 4(1): 100429, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36071667

ABSTRACT

Arbuscular mycorrhizal symbiosis (AMS) is an ancient plant-fungus relationship that is widely distributed in terrestrial plants. The formation of symbiotic structures and bidirectional nutrient exchange requires the regulation of numerous genes. However, the landscape of RNAome during plant AMS involving different types of regulatory RNA is poorly understood. In this study, a combinatorial strategy utilizing multiple sequencing approaches was used to decipher the landscape of RNAome in tomato, an emerging AMS model. The annotation of the tomato genome was improved by a multiple-platform sequencing strategy. A total of 3,174 protein-coding genes were upregulated during AMS, 42% of which were alternatively spliced. Comparative-transcriptome analysis revealed that genes from 24 orthogroups were consistently induced by AMS in eight phylogenetically distant angiosperms. Seven additional orthogroups were specifically induced by AMS in all surveyed dicot AMS host plants. However, these orthogroups were absent or not induced in monocots and/or non-AMS hosts, suggesting a continuously evolving AMS-responsive network in addition to a conserved core regulatory module. Additionally, we detected 587 lncRNAs, ten miRNAs, and 146 circRNAs that responded to AMS, which were incorporated to establish a tomato AMS-responsive, competing RNA-responsive endogenous RNA (ceRNA) network. Finally, a tomato symbiotic transcriptome database (TSTD, https://efg.nju.edu.cn/TSTD) was constructed to serve as a resource for deep deciphering of the AMS regulatory network. These results help elucidate the reconfiguration of the tomato RNAome during AMS and suggest a sophisticated and evolving RNA layer responsive network during AMS processes.


Subject(s)
Mycorrhizae , Solanum lycopersicum , Symbiosis/genetics , Mycorrhizae/genetics , Solanum lycopersicum/genetics , RNA , Gene Expression Profiling , Plants/genetics
5.
Elife ; 112022 10 07.
Article in English | MEDLINE | ID: mdl-36205312

ABSTRACT

Background: Severe pneumonia is one of the common acute diseases caused by pathogenic microorganism infection, especially by pathogenic bacteria, leading to sepsis with a high morbidity and mortality rate. However, the existing bacteria cultivation method cannot satisfy current clinical needs requiring rapid identification of bacteria strain for antibiotic selection. Therefore, developing a sensitive liquid biopsy system demonstrates the enormous value of detecting pathogenic bacterium species in pneumonia patients. Methods: In this study, we developed a tool named Species-Specific Bacterial Detector (SSBD, pronounce as 'speed') for detecting selected bacterium. Newly designed diagnostic tools combining specific DNA-tag screened by our algorithm and CRISPR/Cas12a, which were first tested in the lab to confirm the accuracy, followed by validating its specificity and sensitivity via applying on bronchoalveolar lavage fluid (BALF) from pneumonia patients. In the validation I stage, we compared the SSBD results with traditional cultivation results. In the validation II stage, a randomized and controlled clinical trial was completed at the ICU of Nanjing Drum Tower Hospital to evaluate the benefit SSBD brought to the treatment. Results: In the validation stage I, 77 BALF samples were tested, and SSBD could identify designated organisms in 4 hr with almost 100% sensitivity and over 87% specific rate. In validation stage II, the SSBD results were obtained in 4 hr, leading to better APACHE II scores (p=0.0035, ANOVA test). Based on the results acquired by SSBD, cultivation results could deviate from the real pathogenic situation with polymicrobial infections. In addition, nosocomial infections were found widely in ICU, which should deserve more attention. Conclusions: SSBD was confirmed to be a powerful tool for severe pneumonia diagnosis in ICU with high accuracy. Funding: National Natural Science Foundation of China. The National Key Scientific Instrument and Equipment Development Project. Project number: 81927808. Clinical trial number: This study was registered at https://clinicaltrials.gov/ (NCT04178382).


Subject(s)
Cross Infection , Pneumonia , Humans , Intensive Care Units , Pneumonia/diagnosis , Bronchoalveolar Lavage Fluid , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics
6.
Nat Plants ; 8(10): 1138-1139, 2022 10.
Article in English | MEDLINE | ID: mdl-36241734
7.
Mol Plant ; 14(12): 2015-2031, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34364002

ABSTRACT

Nucleotide-binding leucine-rich-repeat (NLR) genes comprise the largest family of plant disease-resistance genes. Angiosperm NLR genes are phylogenetically divided into the TNL, CNL, and RNL subclasses. NLR copy numbers and subclass composition vary tremendously across angiosperm genomes. However, the evolutionary associations between genomic NLR content and ecological adaptation, or between NLR content and signal transduction components, are poorly characterized because of limited genome availability. In this study, we established an angiosperm NLR atlas (ANNA, https://biobigdata.nju.edu.cn/ANNA/) that includes NLR genes from over 300 angiosperm genomes. Using ANNA, we revealed that NLR copy numbers differ up to 66-fold among closely related species owing to rapid gene loss and gain. Interestingly, NLR contraction was associated with adaptations to aquatic, parasitic, and carnivorous lifestyles. The convergent NLR reduction in aquatic plants resembles the lack of NLR expansion during the long-term evolution of green algae before the colonization of land. A co-evolutionary pattern between NLR subclasses and plant immune pathway components was also identified, suggesting that immune pathway deficiencies may drive TNL loss. Finally, we identified a conserved TNL lineage that may function independently of the EDS1-SAG101-NRG1 module. Collectively, these findings provide new insights into the evolution of NLR genes in the context of ecological adaptation and genome content variation.


Subject(s)
Genes, Plant , Magnoliopsida/genetics , NLR Proteins/genetics , Signal Transduction/genetics , Arabidopsis/genetics , Binding Sites , Disease Resistance/genetics , Evolution, Molecular , Phylogeny , Plant Diseases/genetics , Plant Proteins/genetics
8.
Theor Appl Genet ; 134(8): 2367-2377, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33997918

ABSTRACT

KEY MESSAGE: In the soybean variant V94-5152, a BCMV-resistance gene was mapped near to the region of SMV-resistance Rsv4 locus, raising a possibility that V94-5152 may rely on Rsv4 locus to resist against both SMV and BCMV. Both Soybean mosaic virus (SMV) and Bean common mosaic virus (BCMV) can induce soybean mosaic diseases, but few studies have explored soybean resistance against BCMV so far. In this study, V94-5152, a soybean variant resistant to BCMV and SMV, was crossed with a susceptible cultivar, Williams 82 to map the resistance gene. By inoculating 292 F2 individuals with a BCMV isolate HZZB011, a segregation ratio of 3 resistant: 1 susceptible was observed, suggesting that V94-5152 possesses a single-dominant resistance gene against BCMV-HZZB011. Bulk segregation analysis (BSA) then revealed that the resistance gene is closely linked to BARCSOYSSR_02_0617, a simple sequence repeat (SSR) marker on chromosome 2. Genotyping neighboring SSR markers among the 292 F2 individuals enabled us to draw a genetic linkage map, which indicated that the BCMV-resistance gene is located 0.2 cM downstream of BARCSOYSSR_02_0617. Amplification and sequencing ten candidate genes (Glyma02g121300 to Glyma02g122200) around this marker then revealed four genes containing nonsynonymous changes or indels. Also, this location is near to the recently cloned SMV-resistance Rsv4 locus from the cultivar Peking. By obtaining ten more sequences of Rsv4 locus from cultivated and wild soybean materials, we further investigated the variation and evolutionary patterns of this virus-resistance locus. It was evident that positive selections had been acting on this locus, with one critical amino acid change (R55P) shared by all resistance soybeans tested.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Disease Resistance/immunology , Glycine max/immunology , Plant Diseases/immunology , Plant Proteins/metabolism , Potyvirus/physiology , Disease Resistance/genetics , Gene Expression Regulation, Plant , Microsatellite Repeats , Plant Diseases/genetics , Plant Diseases/virology , Plant Proteins/genetics , Potyvirus/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/virology
9.
Theor Appl Genet ; 132(11): 3101-3114, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31432199

ABSTRACT

KEY MESSAGE: In the soybean cultivar Raiden, both a SMV-resistance gene and a BCMV-resistance gene were fine-mapped to a common region within the Rsv1 complex locus on chromosome 13, in which two CC-NBS-LRR resistance genes (Glyma.13g184800 and Glyma.13g184900) exhibited significant divergence between resistant and susceptible cultivars and were subjected to positive selection. Both Soybean mosaic virus (SMV) and Bean common mosaic virus (BCMV) can induce soybean mosaic diseases. To date, few studies have explored soybean resistance against these two viruses simultaneously. In this work, Raiden, a cultivar resistant to both SMV and BCMV, was crossed with a susceptible cultivar, Williams 82, to fine-map the resistance genes. After inoculating ~ 200 F2 individuals with either SMV (SC6-N) or BCMV (HZZB011), a segregation ratio of 3 resistant:1 susceptible was observed, indicating that for either virus, a single dominant gene confers resistance. Bulk segregation analysis (BSA) revealed that the BCMV-resistance gene is also linked to the SMV-resistance Rsv1 complex locus. Genotyping the F2 individuals with 12 simple sequence repeat (SSR) markers across the Rsv1 complex locus then preliminarily mapped the SMV-resistance gene, Rsv1-r, between SSR markers BARCSOYSSR_13_1075 and BARCSOYSSR_13_1161 and the BCMV-resistance gene between BARCSOYSSR_13_1084 and BARCSOYSSR_13_1115. Furthermore, a population of 1009 F2 individuals was screened with markers BARCSOYSSR_13_1075 and BARCSOYSSR_13_1161, and 32 recombinant F2 individuals were identified. By determining the genotypes of these F2 individuals on multiple internal SSR and single nucleotide polymorphism (SNP) markers and assaying the phenotypes of selected recombinant F2:3 lines, both the SMV- and BCMV-resistance genes were fine-mapped to a common region ( ~ 154.5 kb) between two SNP markers: SNP-38 and SNP-50. Within the mapped region, two CC-NBS-LRR genes exhibited significant divergence between Raiden and Williams 82, and their evolution has been affected by positive selection.


Subject(s)
Disease Resistance/genetics , Glycine max/genetics , Plant Diseases/genetics , Potyvirus/pathogenicity , Chromosome Mapping , Genes, Dominant , Genes, Plant , Genetic Markers , Genotype , Microsatellite Repeats , Plant Diseases/virology , Polymorphism, Single Nucleotide , Selection, Genetic , Glycine max/virology
10.
Elife ; 82019 06 06.
Article in English | MEDLINE | ID: mdl-31169496

ABSTRACT

Cutaneous melanoma (CM) is a life-threatening form of skin cancer. Prognostic biomarkers can reliably stratify patients at initial melanoma diagnosis according to risk, and may inform clinical decisions. Here, we performed a retrospective, cohort-based study analyzing genome-wide DNA methylation of 461 patients with CM from the TCGA database. Cox regression analyses were conducted to establish a four-DNA methylation signature that was significantly associated with the overall survival (OS) of patients with CM, and that was validated in an independent cohort. Corresponding Kaplan-Meier analysis displayed a distinct separation in OS. The ROC analysis confirmed that the predictive signature performed well. Notably, this signature exhibited much higher predictive accuracy in comparison with known biomarkers. This signature was significantly correlated with immune checkpoint blockade (ICB) immunotherapy-related signatures, and may have potential as a guide for measures of responsiveness to ICB immunotherapy.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Transcriptome/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Melanoma/epidemiology , Melanoma/pathology , Middle Aged , Prognosis , Proportional Hazards Models , Skin Neoplasms/epidemiology , Skin Neoplasms/pathology , Young Adult , Melanoma, Cutaneous Malignant
11.
Trends Plant Sci ; 24(1): 9-12, 2019 01.
Article in English | MEDLINE | ID: mdl-30446304

ABSTRACT

The NBS-LRR genes are functionally responsible for plant resistance to alien pathogens. Here, we show that NBS-LRR genes originated in the common ancestor of the whole green lineage, and have rapidly diverged into three subclasses with different domain combinations (TNL, CNL, and RNL) before the split of green algae.


Subject(s)
Disease Resistance/genetics , Genes, Plant/genetics , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/physiology , Disease Resistance/physiology , Evolution, Molecular , Genes, Plant/physiology , Oryza/genetics , Oryza/immunology , Oryza/physiology , Phylogeny , Plant Proteins/genetics , Plant Proteins/physiology , Plants/genetics , Plants/immunology
12.
Theor Appl Genet ; 131(9): 1851-1860, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29909526

ABSTRACT

KEY MESSAGE: In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens. Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Plant Diseases/genetics , Potyvirus , Chromosome Mapping , Genes, Dominant , Genetic Markers , Microsatellite Repeats , Plant Diseases/virology , Polymorphism, Single Nucleotide , Glycine max/virology
13.
Immunopharmacol Immunotoxicol ; 40(2): 107-116, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29405080

ABSTRACT

OBJECTIVE: To explore the effect and mechanism of artesunate on γδ T cell-mediated antitumor immune responses against hepatoma carcinoma cells (HepG2) in vitro. METHODS: Human γδ T cells or HepG2 were respectively treated with artesunate, subjected to co-culture as appropriate, and the following assays were subsequently conducted: CCK8 to examine cell viability; LDH release assay to detect the killing effect of γδ T cells on HepG2 cells; flow cytometry to examine the expression of perforin (PFP) and granzyme B (GraB) of γδ T cells; ELISA to evaluate the levels of TGF-ß1 and IL-10 in the collected supernatant of HepG2 cells pretreated with artesunate; and Western blot analysis to examine Fas, FasL, STAT3, p-STAT3 expression of HepG2 cells induced by artesunate. Results: The results showed that the cytotoxicity effect of γδ T cells pretreated with artesunate on HepG2 cells was augmented via elevating the expression of GraB in γδ T cells. Furthermore, treatment with artesunate reversed the inhibition of HepG2 cells on γδ T cells by reducing the secretion of TGF-ß1 in HepG2 cells supernatant and enhanced the antitumor effect of γδ T cells against HepG2 cells through increasing the expression of Fas on HepG2 cells, which may be attributed to the inhibition of STAT3 signaling protein. CONCLUSION: Artesunate has several mechanisms for augmenting the antitumor immune responses mediated by γδ T cells. These results suggested artesunate may be an efficacious agent in the treatment of hepatocellular carcinoma.


Subject(s)
Artemisinins/pharmacology , Carcinoma, Hepatocellular/immunology , Immunity, Cellular/drug effects , Liver Neoplasms/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Tumor Escape/drug effects , Artesunate , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Liver Neoplasms/pathology , T-Lymphocytes/pathology
14.
Theor Appl Genet ; 131(2): 253-265, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29038948

ABSTRACT

KEY MESSAGE: The divergence patterns of NBS - LRR genes in soybean Rsv3 locus were deciphered and several divergent alleles ( NBS_C, NBS_D and Columbia NBS_E ) were identified as the likely functional candidates of Rsv3. The soybean Rsv3 locus, which confers resistance to the soybean mosaic virus (SMV), has been previously mapped to a region containing five nucleotide binding site-leucine-rich repeats (NBS-LRR) genes (referred to as nbs_A-E) in Williams 82. In resistant cultivars, however, the number of NBS-LRR genes in this region and their divergence from susceptible alleles remain unclear. In the present study, we constructed and screened a bacterial artificial chromosome (BAC) library for an Rsv3-possessing cultivar, Zaoshu 18. Sequencing two positive BAC inserts on the Rsv3 locus revealed that Zaoshu 18 possesses the same gene content and order as Williams 82, but two of the NBS-LRR genes, NBS_C and NBS_D, exhibit distinct features that were not observed in the Williams 82 alleles. Obtaining these NBS-LRR genes from eight additional cultivars demonstrated that the NBS_A-D genes diverged into two different alleles: the nbs_A-D alleles were associated with the rsv3-type cultivars, whereas the NBS_A-D alleles were associated with the Rsv3-possessing cultivars. For the NBS_E gene, the cultivar Columbia possesses an allele (NBS_E) that differed from that in Zaoshu 18 and rsv3-type cultivars (nbs_E). Exchanged fragments were further detected on alleles of the NBS_C-E genes, suggesting that recombination is a major force responsible for allele divergence. Also, the LRR domains of the NBS_C-E genes exhibited extremely strong signals of positive selection. Overall, the divergence patterns of the NBS-LRR genes in Rsv3 locus elucidated by this study indicate that not only NBS_C but also NBS_D and Columbia NBS_E are likely functional alleles that confer resistance to SMV.


Subject(s)
Disease Resistance/genetics , Glycine max/genetics , Plant Diseases/genetics , Potyvirus , Alleles , Genes, Plant , Plant Diseases/virology , Glycine max/virology
16.
Arch Virol ; 162(3): 901-904, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27909932

ABSTRACT

Soybean mosaic virus (SMV) is a devastating plant virus classified in the family Potyviridae, and known to infect cultivated soybeans (Glycine max). In this study, seven new SMVs were isolated from wild soybean samples and analyzed by whole-genome sequencing. An updated SMV phylogeny was built with the seven new and 83 known SMV genomic sequences. Results showed that three northeastern SMV isolates were distributed in clade III and IV, while four southern SMVs were grouped together in clade II and all contained a recombinant BCMV fragment (~900 bp) in the upstream part of the genome. This work revealed that wild soybeans in China also act as important SMV hosts and play a role in the transmission and diversity of SMVs.


Subject(s)
Genome, Viral , Glycine max/virology , Plant Diseases/virology , Potyvirus/genetics , Base Sequence , China , Molecular Sequence Data , Phylogeny , Potyvirus/classification , Potyvirus/isolation & purification , Viral Proteins/genetics
17.
Theor Appl Genet ; 129(11): 2227-2236, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27544525

ABSTRACT

KEY MESSAGE: The Rsv1 - h gene in cultivar Suweon 97, which confers resistance to SMVs, was mapped to a 97.5-kb location (29,815,195-29,912,667 bp on chromosome 13) in the Rsv1 locus, thereby providing additional insights into the molecular nature underlying variations in resistance alleles in this particular locus. Soybean mosaic virus (SMV) is a well-known devastating pathogen of soybean (Glycine max (L.) Merrill.) causing significant yield losses and seed quality deterioration. A single dominant allele, Rsv1-h, which confers resistance to multiple SMV strains, was previously reported in the cultivar Suweon 97, but its exact location is unknown. In the present study, Suweon 97 was crossed with a SMV-sensitive cultivar, Williams 82. Inoculating 267 F 2 individuals with two Chinese SMV strains (SC6-N and SC7-N) demonstrated that one single dominant gene confers SMV resistance. Another 1,150 F 2 individuals were then screened for two simple sequence repeat (SSR) markers (BARCSOYSSR_13_1103 and BARCSOYSSR_13_1187) that flank the Rsv1 locus. Seventy-four recombinants were identified and 20 additional polymorphic SSR markers within the Rsv1 region were then employed in genotyping these recombinants. F 2:3 and F 3:4 recombinant lines were also inoculated with SC6-N and SC7-N to determine their phenotypes. The final data revealed that in Suweon 97, the Rsv1-h gene that confers resistance to SC6-N and SC7-N was flanked by BARCSOYSSR_13_1114 and BARCSOYSSR_13_1115, two markers that delimit a 97.5-kb region in the reference Williams 82 genome. In such region, eight genes were present, of which two, Glyma13g184800 and Glyma13g184900, encode the characteristic CC-NBS-LRR type of resistance gene and were considered potential candidates for Rsv1-h.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Glycine max/genetics , Plant Diseases/genetics , Potyvirus , Crosses, Genetic , DNA, Plant/genetics , Genes, Dominant , Genetic Markers , Microsatellite Repeats , Phenotype , Plant Diseases/virology , Glycine max/virology
18.
Front Plant Sci ; 7: 998, 2016.
Article in English | MEDLINE | ID: mdl-27458476

ABSTRACT

A major soybean (Forrest cultivar) quantitative trait locus (QTL) gene, Rhg4, which controls resistance to soybean cyst nematodes (SCN), encodes the enzyme serine hydroxylmethyltransferase (SHMT). The resistant allele possesses two critical missense mutations (P130R and N358Y) compared to that of the sensitive allele, rhg4. To understand the evolutionary history of this gene, sequences of 117 SHMT family members from 18 representative plant species were used to reconstruct their phylogeny. According to this phylogeny, the plant SHMT gene family can be divided into two groups and four subgroups (Ia, Ib, IIa, and IIb). Belonging to the Subgroup Ia lineage, the rhg4 gene evolved from a recent duplication event in Glycine sp.. To further explore how the SCN-resistant allele emerged, both the rhg4 gene and its closest homolog, the rhg4h gene, were isolated from 33 cultivated and 68 wild soybean varieties. The results suggested that after gene duplication, the soybean rhg4 gene accumulated a higher number of non-synonymous mutations than rhg4h. Although a higher number of segregating sites and gene haplotypes were detected in wild soybeans than in cultivars, the SCN-resistant Rhg4 allele (represented by haplotype 4) was not found in wild varieties. Instead, a very similar allele, haplotype 3, was observed in wild soybeans at a frequency of 7.4%, although it lacked the two critical non-synonymous substitutions. Taken together, these findings support that the SCN-resistant Rhg4 allele likely emerged via artificial selection during the soybean domestication process, based on a SCN-sensitive allele inherited from wild soybeans.

19.
Plant Signal Behav ; 11(7): e1197470, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27348446

ABSTRACT

Nucleotide-Binding Site-Leucine-Rich Repeat (NBS-LRR) genes are the largest plant disease resistance (R) gene family, accounting for ∼80% of more than 140 cloned R genes. Recently, we systematically investigated NBS-LRR genes in 22 angiosperm genomes. By performing phylogenetic analysis of these genes in major angiosperm clades separately and as a whole, we gained strong evidence supporting that angiosperm NBS-LRR genes are derived from 3 anciently separated NBS-LRR classes: RPW8-NBS-LRR (RNL), TIR-NBS-LRR (TNL) and CC-NBS-LRR (CNL). A total of 23 ancestral NBS-LRR lineages gave rise to the current NBS-LRR diversity of angiosperm through dynamic expansions. Comparative analysis of RNL, TNL, and CNL classes revealed that while RNL genes evolved conservatively to maintain its role in defense signal transduction, the latter 2 classes underwent convergent recent expansions in various plant genomes. The revealed evolutionary pattern of angiosperm NBS-LRR genes reflects a long history of competition between plant and pathogen.


Subject(s)
Magnoliopsida/metabolism , Evolution, Molecular , Genome, Plant/genetics , Magnoliopsida/classification , Magnoliopsida/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
20.
Front Plant Sci ; 7: 429, 2016.
Article in English | MEDLINE | ID: mdl-27066061

ABSTRACT

A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

SELECTION OF CITATIONS
SEARCH DETAIL
...